Use of mesenchymal stem cells seeded on the scaffold in articular cartilage repair

نویسندگان

  • Kaoru Yamagata
  • Shingo Nakayamada
  • Yoshiya Tanaka
چکیده

Articular cartilage has poor capacity for repair. Once damaged, they degenerate, causing functional impairment of joints. Allogeneic cartilage transplantation has been performed for functional recovery of articular cartilage. However, there is only a limited amount of articular cartilage available for transplantation. Mesenchymal stem cells (MSCs) could be potentially suitable for local implantation. MSCs can differentiate into chondrocytes. Several studies have demonstrated the therapeutic potential of MSCs in the repair of articular cartilage in animal models of articular cartilage damage and in patients with damaged articular cartilage. To boost post-implantation MSC differentiation into chondrocytes, the alternative delivery methods by scaffolds, using hyaluronic acid (HA) or poly-lactic-co-glycolic-acid (PLGA), have developed. In this review, we report recent data on the repair of articular cartilage and discuss future developments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold

Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (...

متن کامل

Partial Resurfacing of the Distal Femoral Cartilage Defect with Stem Cell- Seeded Poly-Vinyl-Alcohol (PVA) Scaffold

Objective- To evaluate the biological compatibility of differentiated stem cells embedded in poly-vinyl-alcohol (PVA) scaffolds for repair of distal femoral cartilage defect.   Design- Experimental in vivo study. Animals- Twelve adult male New Zealand white rabbits were used which were divided into two groups (I, II) six rabbits each.   Procedures- Mesenchymal stem cells were isolated from h...

متن کامل

A Review Study: Using Stem Cells in Cartilage Regeneration and Tissue Engineering

Articular cartilage, the load-bearing tissue of the joint, has limited repair and regeneration ability. The scarcity of treatment modalities for large chondral defects has motivated researchers to engineer cartilage tissue constructs that can meet the functional demands of this tissue in vivo. Cartilage tissue engineering requires 3 components: cells, scaffold, and environment. ...

متن کامل

Conditioned medium derived from mesenchymal Stem cells regenerates’ defected articular cartilage

Background & Aims: One of cell- based technical issues associated with cartilage repair assay is delivering cells to the site of the parts where damage is created. Mesenchymal stem cells (MSCs) with their chondrogenic potential are ideal candidates for cartilage regeneration. High expression of cartilage hypertrophy markers by MSCs would result in apoptosis and ossification. This investigation ...

متن کامل

Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold.

OBJECTIVE S The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (BM-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2018